Provable Matrix Sensing using Alternating Minimization

ثبت نشده
چکیده

Alternating minimization has emerged as a popular heuristic for large-scale machine learning problems involving low-rank matrices. However, there have been few (if any) theoretical guarantees on its performance. In this work, we investigate the natural alternating minimization algorithm for the popular matrix sensing problem first formulated in [RFP07]; this problem asks for the recovery of an unknown low-rank matrix from a small number of linear measurements thereof. We show that under suitable RIP conditions, alternating minimization linearly converges to the true matrix. Our result can be extended to matrix completion from randomly sampled entries. Our analysis uses only elementary linear algebra and exploits the fact that, under RIP, alternating minimization can be viewed as a noisy version of orthogonal iteration (which is used to compute the top singular vectors of a matrix).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Provable Inductive Matrix Completion

Consider a movie recommendation system where apart from the ratings information, side information such as user’s age or movie’s genre is also available. Unlike standard matrix completion, in this setting one should be able to predict inductively on new users/movies. In this paper, we study the problem of inductive matrix completion in the exact recovery setting. That is, we assume that the rati...

متن کامل

On the Provable Convergence of Alternating Minimization for Matrix Completion

Alternating Minimization is a widely used and empirically successful framework for Matrix Completion and related low-rank optimization problems. We give a new algorithm based on Alternating Minimization that provably recovers an unknown low-rank matrix from a random subsample of its entries under a standard incoherence assumption while achieving a linear convergence rate. Compared to previous w...

متن کامل

Simple, Efficient, and Neural Algorithms for Sparse Coding

Sparse coding is a basic task in many fields including signal processing, neuroscience and machine learning where the goal is to learn a basis that enables a sparse representation of a given set of data, if one exists. Its standard formulation is as a non-convex optimization problem which is solved in practice by heuristics based on alternating minimization. Recent work has resulted in several ...

متن کامل

Learning Sparsely Used Overcomplete Dictionaries via Alternating Minimization

We consider the problem of sparse coding, where each sample consists of a sparse linear combination of a set of dictionary atoms, and the task is to learn both the dictionary elements and the mixing coefficients. Alternating minimization is a popular heuristic for sparse coding, where the dictionary and the coefficients are estimated in alternate steps, keeping the other fixed. Typically, the c...

متن کامل

Alternating direction algorithms for ℓ0 regularization in compressed sensing

In this paper we propose three iterative greedy algorithms for compressed sensing, called iterative alternating direction (IAD), normalized iterative alternating direction (NIAD) and alternating direction pursuit (ADP), which stem from the iteration steps of alternating direction method of multiplier (ADMM) for `0-regularized least squares (`0-LS) and can be considered as the alternating direct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012